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anthracene nucleus is moving with a lateral translation 
(along L) relative to the oxygen atoms. (1) seems to be 
ruled out as the main explanation because of the mag- 
nitude of the negative ~(L) value. It is much larger than 
any bonding-anisotropy effect could be expected to be. 
This leaves us with the possibility of an L-translation 
of the whole anthracene nucleus relative to the oxygen 
atoms, which seem to be partially immobilized along 
L by 'bonds' to neighbouring molecules. This move- 
ment could possibly be phase-related to the oxygen 
out-of-plane libration; in which case the assumption 
that we are justified in using u~3 values for purposes 
of calculation would be invalid. There is some evidence 
that where an outer and otherwise 'mobile' atom takes 
part in an 'intermolecular bond', that atom is to a 
certain extent immobilized (the hydrogen atoms in urea, 
for example). The shortest intermolecular bond in an- 
thraquinone (Lonsdale et al., 1966) is that linking C(6) 

(zr~-0), which is 3"33 A of (000) with an oxygen atom of 11 
at +20.5°C and 3.25 A at - 170°C (all other C • • • O 
and C • • • C intermolecular distances at room temper- 
atures are over 3.5 A). It is not unreasonable to sup- 
pose that a large out-of-plane movement of the oxygen 
atom would exert some translatory pull on the anthra- 
cene nucleus of the neighbouring molecules to which 
it is attached by such a relatively strong van der Waals 
force. 

Conclusion 
The results for anthraquinone indicate two methods 

of testing for non-rigid-body vibrations in any given 
molecule for which the axes of libration are known 
with a good degree of certainty. 

(1) First the whole molecule and then limited parts 
of the molecule should be treated as if they were vi- 
brating as rigid bodies about the molecular axes of 
inertia. If there are no independent vibrations then the 
values of translatory and libratory amplitudes should 

be invariant with respect to the number of atoms taken 
to determine them. If they are not invariant then the 
differences can be used to determine the nature of the 
independent vibrations. 

(2) The values of Uidcalc)-Uli(obs) should be ex- 
amined critically, preferably using data for more than 
one temperature, to determine whether any individual 
values are consistently too high to be accounted for 
by experimental error or as artefacts of the calculation, 
even when the average value is well within the expected 
e.s.d. If there are such anomalies, these may provide 
a guide as to which atoms to omit from a 'difference' 
rigid-body analysis of the thermal data. 
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The method due to Bertaut (1952) for calculating interaction energies is extended to include statistical 
distribution of charges on geometric lattices. Explicit expressions are developed for statistically random 
charge distributions and implicit expressions for statistical charge distributions with correlation between 
occurrences of charges. 

Introduction 
Ewald (1921) has developed methods to calculate the 
electrostatic potential of ionic lattices by the use of 

* Present address: Department of Metals and Ceramic 
Engineering, Virginia Polytechnic Institute, Blacksburg, Vir- 
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theta functions. The rapid convergence of his series 
makes possible the evaluation of the electrostatic inter- 
action energy and the Madelung constant for ideal ionic 
crystals. Bertaut (1952) by use of faltung theory has 
developed general expressions for the electrostatic 
energy of ideal ionic crystals, which, as a special case, 
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contain the Ewald formula. In this paper it is shown 
that the method of Bertaut (1952) may be extended to 
include statistically disordered crystals. 

Consider a geometric lattice where positive charges 
are situated on lattice sites ~ and negative charges on 
lattice sites ft. The positive or negative charges may be 
distributed on their respective sites: 

(I) in an ordered array 
(II) in a statistically random way 
(III) statistically with correlation between occurrences 

of charges. 

The first and second case are extremes which are seldom 
fully realized in nature, while statistical distribution 
with correlation occupies an intermediate position con- 
necting (I) and (II). 

Formally the total electrostatic energy, WT,, of an 
ionic lattice can be expressed as the sum of self energy, 
Ws, and interaction energy, Wx: 

W T =  W s +  WI . (1) 

In this paper general expressions for the interaction 
energy are derived for cases (II) and (III) described 
above. The statistically random case is solved explicitly, 
and practical examples are given. The statistical case 
with correlation is solved in terms of the statistical 
random case plus implicit integrals over short range 
order parameters. 

The statistical-charge Patterson function 

The concept of the statistical Patterson function is now 
described from which the electrostatic interaction ener- 
gy is later derived. The faltung of a density distribution 
function, e(x), with itself is known as the Patterson 
function: 

P (u )=  l~(x)e(x +u)dv(x)=e~-~ (2) 

Here ~ symbolizes the faltung operation. Statistically 
the Patterson function is interpreted thus: To obtain 
the value of  P(u) we place ourselves in succession on 
each charge and observe which charge may be found at a 
vector distance u. The sum of  all these surroundings 
multiplied by the weight o f  the origin gives P(n). 

For the statistical charge distribution with correlat- 
ion between occurrences of charges as described under 
(III), the statistical-charge Patterson function can be 
written as: 

1 , 
- -  W~lvq ~ Iv~t Iv N P(In)(u)= PII I  ( u ) =  ~E" 2 22 

i,v 

+ X Wt~vq~,~qjl uWmv~, (") r h l , , r / m  , (3) 
i , j;v # tz 

where 

N 
Wilv  

=numbers  of cells 
= a priori probability that site v be occupied by 
a charge of kind i. 

W m,~,(") = a posteriori probability that the/zth lattice site 
at a vector distance u from site v be occupied by 
a charge of kind j, if the vth site is occupied by 
a charge of kind i. 

q~l~ =charge of kind i on lattice site v. 
rhL v =distribution function of ith charge kind on 

site v. 
r/~v =fal tung of ith charge distribution function 

with itself at u = 0. 

rhjvrh~ u =faltung~of ith with j t h  distribution function 
at u # 0 .  

The a posteriori probabilities represent short range 
order. They may be written in the form" 

Wmv~,(u) = wjl . + MllLvl, (u) 
with" 

lim Mmv, (u) = 0  
,~oo (4) 
M(0) = 1 

i i  Ivy - -  Wilv  

M(O) 
i1 tvv ~ - -  Wl l v  

Using relation (4), equation (3) can be written as 

P,m)(u)... X 2 -2 = W~Lvqi ~,rlt ~v 
i,v 

+ Z WilvWll~qilvqjl~tlil v~Jll.t 
i , j ' v ~  tt 

M (") ~ "  (5) + Z Wtlvq~lvqll ~ tjlvt~ ~lilvrljl~, 
i , j  ; v~  tz 

where wtlvwm, represent functions periodic with u or 

P(in)(U) = Ps(u) + ez(u) + PI, M(U), (6) 

where Ps(u) represents the first sum, Pz(u) the second 
sum, and Pz, M(u) the last sum of (5). If no short range 
order exists then MuLv~, (u) = 0  consequently Pz, ~¢(u)=0 
and (6) reduces to: 

Ptm(u) = Ps(U) + PI(u),  (7) 

thus representing statistical random distribution of 
charges as described under (II). 

The electrostatic interaction energy 

The electrostatic interaction energy of a statistical dis- 
tribution with correlation between occurrences of 
charges, Wi(ni), is the sum of two terms: 

WI(III) = WI(II) + W i ,  M ,  (8) 
where 

Wz(m =½1 Pz(u) dv(u) (9) 
0 u 

is the interaction energy due to a statistical random 
charge distribution and 

Wz, m = ½ I  PZ, M(U) dv(u) (10) 
d U 
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is an additional term which contains short range order 
parameters of the form Mijlitu("). 

The interaction energy due to a statistical random 
point charge distribution, W)(n), may conveniently be 
expressed by defining an average density distribution 
function: 

a(x)= ,S wll~qtlvJ(X--rv). (11) 
i,v 

Here the Dirac J function replaces the charge distri- 
bution function r/, and r v is the vector to the vth lattice 
site. a(x) is a periodic function and may be developed 
in a Fourier series: 

a(x) = V-XZ'F(h) exp ( -21r ih .  x) 

with the Fourier transform 

F(h)= X qit exp (2zcih. Xv) (12) 
It 

where 

qv= ~r Wilvqtlv 
i 

Xv=fractional coordinates of the charges in the unit 
cell 

h =reciprocal vector. 

Making use of the fact that the Fourier transform of a 
product, o~-{F(h). F(h)*}, is equal to the faltung of the 
Fourier transformed functions, there results: 

A(u)=aa= V -1 X IF(h)[ 2 exp (2ztih. u) 
h 

__  , ~  2 2 
- WllvqtlvJ(U) 

i,v 

+ ,~, WtlvWjluqtlvqliuJ(rit u -  u) 
i , j ; v C a  

= A s + A x  (13) 

where 

As represents the first and Ax the second term in 
equation (13), and 

ruv = r v -  ru. 

Comparing (13) with (5) and (7) it is immediately 
seen that the interaction terms, AI, are identical with 
P~(u) where the prime indicates J -+ r/, i.e. point charge 
distribution. Therefore, the interaction energy of a 
statistical random point charge distribution, W'mx), is 
given by: 

d u ,) u 

_ 1 Z' [ ~ [ z  i exp (2z~ih. u) dr(u) 
2 V h  u 

,~ u 

1 v- [r(h)l 2 ~' As(u) 
2zcV ~ h 2 ½ ~ - - u - -  

dr(u) (14) I 

In this form equation (14) is divergent. In order to 
achieve convergence it is necessary to replace the Dirac 
J functions with spherosymmetric charge distribution 
functions (Gauss function). The formalism for this 
substitution developed by Bertaut (1952) need not be 
repeated. It suffices to rewrite Bertaut's formulae (34) 
and (35), and refer the reader to Bertaut's paper for 
charge overlap corrections and further details. 

Thus the interaction energy for statistically rand- 
om charge distribution (II) is 

1 v I F(h)12 
W I ( I I )  - I~0(h) l 2 2z~ V "~ h 2 

oo 

-2re fUoP'(u)du(Xq~) (15) 

o r  

1 IF(h)l 2 
mI(II)-- 2zrV ~ - h  ~--I~°(h)12 

oo 

-l]~(h)[2dh(Z, qZO (16) 

where ~0(h)= J" a(x)exp (2z~ih. x)dv(x) is the Fourier 
transform of the spherosymmetric, normalized charge 

distribution function, a(x), and p ' (u)= aa. 
The electrostatic interaction energy of a statistical 

distribution with correlation between the occurrences 
of charges, (8), can be expressed by (15) or (16) plus 
14/i, m (equation 10). WI, iv1 may be evaluated in direct 
space as indicated by (10), or the summation may be 
carried out in Fourier space. In either case the conver- 
gence is assured by the damping character of 

lim M~jlvu (u) = 0.  
U-----~ O0 

Explicit functional forms for WI, M will be the subject 
of a future paper. 

E x a m p l e s  

The statistically random distribution is illustrated by 
A1Mg spinel. In the unit cell of normal spinel eight 
Mg 2+ are situated on tetrahedrally oxygen-coordinated 
sites, and sixteen AP + on octahedrally oxygen-coordin- 
ated sites. In inverse spinel with statistical distribution 
eight AP + occupy the tetrahedrally coordinated sites, 
and eight AP + plus eight Mg 2+ are assumed to be 
statistically random distributed on octahedrally co- 
ordinated sites. In statistical spinel the cations are as- 
sumed to be distributed in a statistically random way 
on tetrahedrally and octahedrally coordinated sites. 
For the calculation of the interaction energy a lattice 
constant of 8.080 and a parameter of 0.235 were as- 
sumed. 

The interaction energies were found to be: 
1. Normal spinel 5568 kcal.mole -1 
2. Inverse spinel with 

statistical distribution 5416 kcal.mole-1 
3. Statistical spinel 5442 kcal.mole -1 
(random distribution of cations on both cation-sites) 
The small differences in the electrostatic energies indic- 
ate that the spinel type is not primarily governed by 

A C 2 0  - 2* 
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electrostatic forces. The repulsions terms amount to 
about 10-15% of the lattice energy and cannot be 
neglected. It should be pointed out the variation of the 
oxygen parameter has not been taken into account as 
has already been done by Verwey, de Boer & van 
Santen (1948), who already give the energy values for 
1 and 2. 

This paper is part of an investigation of the cation 
distribution in mixed crystals. We thank the Deutsche 

Forschungsgemeinschaft for financial assistance. One 
of us (K.H.) wishes to express his appreciation to the 
National Science Foundation for a postdoctoral fel- 
lowship. 
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The Structure of Mercuri-iodide Ions. I. Trimethylsulphonium Mercuritriiodide (CH3)3SHgI3  
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Trimethylsulphonium mercuritriiodide, (CH3)3SHgI3, crystallizes in spacegroup P21/c with cell dim- 
ensions a = 8.51 + 0.03, b = 15.57 + 0.05, c = 11-69 + 0-12/~, fl = 128.0 ° + 0.4 ° and four molecules per cell. 
Intensity data were collected with an Arndt & Phillips automatic linear diffractometer and Mo Kc~ 
radiation and the structure was solved by Patterson and Fourier syntheses with least-squares refinement. 
The HgI~- ion is planar trigonal and the (CH3)3S ÷ ion is pyramidal. 

Introduction 

In the analysis of the structures of proteins by the iso- 
morphous replacement method, it is required to in- 
troduce a heavy atom into the crystal structure with- 
out displacing the protein molecules in any way. One 
of the most successful heavy atom groups to be used 
with a number of proteins is an ion derived from 
K2HgI4. At low resolution the precise nature of the 
complex is not important but the use of these deriv- 
atives at a resolution higher than 6 ~ has been ham- 
pered by lack of knowledge of the nature of the heavy 
atom group. Sillen (1949) has investigated the nature 
of the mercuri-iodide ions present in solution as a 
function of the concentration of iodine and has shown 
that at any one concentration of iodine a number of 
different ions can be present. 

Bluhm, Bodo, Dintzis & Kendrew (1958) have in- 
vestigated the probable nature of the ion included in 
the derivative of sperm-whale myoglobin by a titration 
experiment carried out in the same conditions as those 
used in crystallization and obtained results suggesting 
that the complex included is HgI3. Furthermore, they 
discovered that a mercuri-iodide group is incorporated 
in the myoglobin molecule at two sites and, following 
the work of Smiles (1900) on complexes of mercuric 
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iodide and methyl sulphide, they speculated that the 
two methionine residues in sperm-whale myoglobin 
might be involved in the complex formation. Kendrew, 
Watson, Strandberg, Dickerson, Phillips & Shore 
(1961) have since shown, however, by locating the 
methionine residues, that they are not involved in the 
complex formation and very recently Scouloudi (1965) 
has shown that most of the mercuri-iodide in the com- 
plex with seal myoglobin is present in the form of a 
roughly planar HgI3 group. 

Rfiy & Adhikary (1930) had already shown that one 
of the compounds of Smiles was composed of two 
singly charged ions, (CH3)3 S+ and HgI;-, and that an- 
other consisted of two singly charged positive ions and 
one doubly charged negative ion, namely 2(CH3)3 S+ 
and HgI ]-. These general conclusions have been con- 
firmed and the configurations of the mercuri-iodide 
ions have been determined in the studies of these two 
compounds that are reported in this and the following 
paper. A preliminary account of the work has already 
been published (Fenn, Oldham & Phillips, 1963). 

Experimental 

The compound was prepared by the method of R~y 
& Adhikary (1930). Needle-shaped crystals were grown 
from a solution of (CH3)3SHgI3 in acetone, and from 
oscillation, Weissenberg and precession photographs 
it was established that the crystal system is mono- 


